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Abstract: Multi-sensor data fusion can provide more comprehensive and more accurate analysis
results. However, it also brings some redundant information, which is an important issue with respect
to finding a feature-mining method for intuitive and efficient analysis. This paper demonstrates
a feature-mining method based on variable accumulation to find the best expression form and
variables’ behavior affecting beer flavor. First, e-tongue and e-nose were used to gather the taste
and olfactory information of beer, respectively. Second, principal component analysis (PCA), genetic
algorithm-partial least squares (GA-PLS), and variable importance of projection (VIP) scores were
applied to select feature variables of the original fusion set. Finally, the classification models based
on support vector machine (SVM), random forests (RF), and extreme learning machine (ELM) were
established to evaluate the efficiency of the feature-mining method. The result shows that the
feature-mining method based on variable accumulation obtains the main feature affecting beer flavor
information, and the best classification performance for the SVM, RF, and ELM models with 96.67%,
94.44%, and 98.33% prediction accuracy, respectively.

Keywords: e-tongue; e-nose; data fusion; feature mining; variable accumulation; beer

1. Introduction

The consumption of beer, as a beverage, ranks third in the world after water and tea. It is rich
in various amino acids, vitamins, and other nutrients needed by the human body [1,2], which is
euphemistically known as ‘liquid bread’. Barley germination is the main raw material for beer
brewing, which makes beer a low-alcohol and high-nutrition drink. Additionally, it promotes digestion,
spleen activity, appetite, and other functions [3–5].

Flavor information is one of the reference factors that reflects the beer’s features, which consists
of taste and olfactory information. Due to different manufacturing processes, both the taste and
the smell of different beers are different. According to consumer preference, they choose beers with
different flavors. Therefore, accurately and efficiently identifying different beers, and finding important
features, are particularly significant. Meanwhile, it is also meaningful for quality control, storage,
and authenticity recognition. A crucial observation was obtained in the psychology literature that
the intensity of the senses could be overlapped, and people usually mistake volatile substances as
‘taste’ [6]. When we cannot smell, it is difficult to distinguish apple and potato, red wine and coffee.
The food odor can stimulate people to salivate, which improves our sensation. When drinking fruit
juice with the nose squeezed, sweet and sour can be felt by the tongue. Setting the nose free after
drinking, the fruit juice flavor information will appear, so the sensory experience of food must be fully
dependent on both the tongue and nose [7]. The conventional physical and chemical analysis methods
cannot reflect the flavor characteristics of beer [8–10]. The most used method is sensory evaluation [11],
but this method is quite subjective since the evaluation result changes with the physical condition and
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environment. It is time-consuming and has low efficiency. As objective and effective intelligent bionic
instruments that are easy to operate, offer high precision, and are time-saving, among other advantages,
e-tongue [12–14] and e-nose [15–17] are gradually replacing the traditional detection methods.

The e-tongue and e-nose could be applied to analyze the beer [18,19]. However, the flavor
features of beer are complicated due to its composition and concentration. Therefore, the e-tongue and
e-nose fusion system has a significant advantage of obtaining comprehensive information of taste and
olfactory characteristics. The combined information based on the instruments is called data fusion [20].
The data-level (low-level) fusion combines the original sensing information of multiple detection
instruments to obtain new data. The feature-level (medium-level) fusion combines features extracted
from the original sensing information of multiple detection instruments. The decision-level (high-level)
fusion combines sensor information after each sensor has made a preliminary determination, then
fuses that information to obtain a final decision. Multi-sensor data fusion based on e-tongue and
e-nose has been used widely, for instance, in the blending ratio prediction of old frying oil [21],
classification of different honey and rice samples [22,23], nondestructive detection of fish freshness [24],
and the evaluation of tea and strawberry juice flavor [25,26]. The previous studies showed that
multi-sensor data fusion in the classification of food and quality assessment were much closer to the
human perception mode and improved the analysis results. However, it also brings some irrelevant
information, and even noisy information. The studies cannot give an effective feature selection method,
which could lead to an unfavorable final classification and prediction, and increase the complexity
of the model prediction. More importantly, we should adopt fewer features to reduce the sample
detection difficulty and detection time, and the best fusion and identification methods are applied to
improve the detection efficiency and classification accuracy rate of samples in real projects. For the
feature method research, experts took advantage of GA-PLS to reduce the number of variables of
electrochemical signals [27], extracted the features from sensor response signals in the time and
frequency domains [28], optimized the number of channel inputs of the olfactory nervous system
bionic model based on PCA [29], selected the variable characteristics of the multi-sensor based on the
analysis of variance (ANOVA) [30], and applied multidimensional projection techniques (interactive
document map) to analyze the capacitance data [31]. These studies were significant for reducing the
feature dimension and achieving high-precision prediction of the sample. However, studies lacked
a method to assess the importance of variables, and little information on the variables’ behavior and
correlation were offered.

This study provides a feature-mining method to obtain the best form of expression affecting
beer flavor information. It improves the accuracy rate of identification and reduces the complexity
of model prediction. Under the practical application background, it is significant that models are
fast and accurate. Here, we select the SVM, RF, and ELM as the appraisal models, which have good
generalizability and fast running time. We observe the classification performance of evaluation models
to find the main feature and the variable’s behavior, and contrast the analysis results of the different
evaluation models to verify the validity and universality of the method. Figure 1 shows the technical
route for this paper.
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2. Materials and Methods

2.1. Beer

Five different beers were used in this study, and their alcohol degree, original wort concentration,
and raw materials were obtained from the beer bottle labels. Table 1 lists all of these.

Table 1. Characteristics of sampled beers.

Brand Alcohol Content (% vol) Original Wort Concentration (◦ P) Raw and Auxiliary Materials

Landai ≥4.3 11 Water, malt, rice, hops
Xuehua ≥3.3 9 Water, malt, rice, hops
Baiwei ≥3.6 9.7 Water, malt, wheat, hops
Harbin ≥3.6 9.1 Water, malt, rice, hops
Qingdao ≥4.3 11 Water, malt, rice, hops

2.2. Data Acquisition of Intelligent Bionic Detection

2.2.1. E-Tongue Data Acquisition

The SA-402B e-tongue, developed by the Japan Insent Company, was used to gather beer taste
information. The instrument includes a sensor array, an automatic detection system, a data acquisition
system, and data analysis software. The sensor array consists of five taste sensors, and each sensor is
composed of a unique artificial lipid-based membrane. Two Ag/AgCl electrodes containing an inner
solution containing 3.33 M KCl and saturated AgCl were used for the reference electrode. The sensor
AAE was applied to detect umami substances. The sensor CT0 was applied to detect salty substances.
The sensor CA0 was applied to detect sour substances. The sensor C00 was applied to detect bitter
substances. The sensor AE1 was applied to detect astringent substances. The positive sensor array
consisted of C00, AE1, and a reference electrode. The negative sensor array consisted of CT0, CA0,
AAE, and a reference electrode. Figure 2 shows the SA-402B e-tongue system.
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Figure 2. The SA-402B e-tongue system.

The sample solution, reference solution, positive cleaning solution, and negative cleaning solution
were put into the reagent tank. The automatic detection device manipulated the robot arm to collect the
sample’s taste information by setting the system parameter. When the taste substances were absorbed
by the unique artificial lipid-based membrane, the potential difference between the working electrode
and the reference electrode was measured. Forty milliliter beer samples were placed into the clean
measuring cups. Before the test began, the sensor was cleaned in the positive and negative cleaning
solution for 90 s, after which it was cleaned in the reference solution for 120 s, and then repeated in
another reference solution. After the balance was reached in the reference solution, the test was started.
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The sensor tested each sample for 30 s, then the sensor was cleaned sensor twice, quickly, and returned
to the reference solution to measure the aftertaste value (cpa), the measurement was completed once.
After each measurement, the sensors were cleaned automatically. Six samples of each beer were
prepared for measuring three times. Finally, a total of 90 samples were obtained. The experimental
temperature was 20 ± 0.5 ◦C, and the relative humidity was 65 ± 2% RH. The intensity value of each
sensor at the 30th second was extracted and analyzed in this study.

2.2.2. E-Nose Data Acquisition

The PEN3 e-nose, developed by the Airsense Analytics Inc. (Schwerin, Germany), was used to
gather beer olfactory information. The instrument includes a gas collection device, a gas detection unit,
and an air purification device. The gas detection unit includes a sensor array, and a pattern recognition
analysis and processing system. The sensor array contains 10 metal oxide gas sensors, which can
achieve the detection of olfactory cross-sensitive information. The components to be detected by
sensors were listed as below: aromatic (W1C), hydrocarbon (W5S), aromatic (W3C), hydrogen (W6S),
arom-aliph (W5C), broad-methane (W1S), sulfur-organic (W1W), broad-alcohol (W2S), sulfur-chlorine
(W2W), and methane-aliphatic (W3S). Figure 3 shows the PEN3 e-nose system.
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Figure 3. The PEN3 e-nose system.

Five milliliters of a beer sample was put into a cork-tightened 50-mL sampling chamber for 10 min
to ensure sufficient volatility. Before the test began, the gas chamber was cleaned with a gas flow to
normalize the sensor signal, which was filtered by active charcoal at a flow rate of 300 mL/min for 60 s.
The detection time was 80 s at the gas flow speed of 300 mL/min, so that the sensor reached a stable
value. The sensor response value was defined as G/G0 (G0/G), where G is the conductivity of the
sensor when the sample to be tested entered the sensor gas detection unit and G0 is the conductivity of
the sensor when the pure gas entered the sensor gas detection unit. Eighteen samples of each beer were
prepared for measurement. Finally, a total of 90 samples were obtained. The experimental temperature
was 20 ± 0.5 ◦C, and the relative humidity was 65 ± 2% RH. The intensity value of each sensor at the
60th second was extracted and analyzed in this study.

2.3. Variable Selection

Principal component analysis (PCA) is a multivariate statistical analysis method which can
transform the data into a new coordinate system, converting the multivariate information into several
synthetic variables [32]. PCA preserves the useful information of the original variable, reducing the
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dimension of the multidimensional dataset, and extracts the principal component. The number of
principal components is calculated according to the maximum variance principle. We determined
the number of principal components according to the cumulative contribution rate and practical
requirements. In this work, in order to obtain as much information as possible from the original fusion
set, we made sure that the principal component with a cumulative variance contribution was 99%.

The feature variables can be screened by genetic algorithm-partial least squares (GA-PLS) to
remove redundant variables for constructing the classification model [33,34]. In the process of
variable selection, a randomization test is used to determine whether it can be applied; usually,
the randomization test value is less than 5. As the number of variables increases, the cross-validated
exceptions variance (CV%) value gradually increases to reach a maximum, and finally maintains
a relatively stable state. Meanwhile, the root mean square error of cross-validation (RMSECV)
gradually decreases to reach a minimum, and finally maintains a relatively stable state. In the
calculation process, the chromosome corresponds to the highest CV%, and smallest RMSECV is the
best optimal variable subset.

In the PLS, the explanatory ability of the independent variable to the dependent variable is
measured by the variable importance of projection (VIP) scores [35]. The marginal contribution of the
independent variable to the principal component is called VIP. The VIP definition is based on the fact
that the explanatory ability of the independent variable to the dependent variable is passed through t,
and if the explanatory ability of t to the dependent variable is strong, and the independent variable
plays a very important role for t, we think that the explanatory ability of the independent variable to
the dependent variable will be large. In this study, the variable importance of the e-tongue and e-nose
fusion set is sorted based on the VIP scores.

2.4. Multivariate Analysis

2.4.1. Support Vector Machines (SVM)

SVM was first proposed by Cortes and Vapnik [36], and is a supervised learning model for
classification and regression. The main idea is to establish a classification hyperplane as a decision
plane. The SVM uses the kernel function to map the data to the high-dimensional space, making it as
linear as possible. The kernel functions include linear kernel, polynomial kernel, radial basis kernel
(RBF), Fourier kernel, spine kernel, and sigmoid nucleus in SVM. Compared with the kernel function
and previous studies, the RBF kernel function gave an excellent classification performance [37–39].
Whether the sample is small or large, high dimension or low dimension, the RBF kernel function is
applicable. Therefore, this paper used the RBF as the SVM classification kernel function.

The SVM algorithm proceeds as follows:
Set the detected data vector to be N-dimensional, and then the L sets can be represented as

(x1, y1), · · · , (xl , yl) ∈ Rn.
The hyperplane constructed as:

f (x) = v·ϕ(x) + b (1)

where v is the weight coefficient of the decision plane, ϕ(x) is a nonlinear mapping function, and b
is the domain value for the category division. In order to minimize the structural risk, the optimal
classification plane satisfies the condition as:

yi(v·ϕ(xi) + b) ≥ 1 (2)

Introducing the nonnegative slack variable ξi, the classification error is allowed within a certain
range. Therefore, the optimization problem is translated into: min 1

2‖v‖
2 + c

n
∑

i=1
ξi, c ≥ 0

s.t. yi[(v·ϕ(xi) + b)] ≥ 1− ξi, ξi ≥ 0
(3)



Sensors 2017, 17, 1656 6 of 17

where c is the penalty factor to control the complexity and approximation error of the model,
and determine the generalizability of the SVM. Here, introducing the Lagrange multiplier algorithm,
the optimization problem is transformed into dual form:

min 1
2

n
∑

i=1

n
∑

j=1
yiyjaiajK(xi, xj)−

n
∑

i=1
ai

s.t.
n
∑

i=1
yiai = 0, 0 ≤ ai ≤ c

(4)

where:
K(xi, xj) = (ϕ(xi)·ϕ(xj)) (5)

In this paper, the RBF kernel function is introduced:

K(xi, xj) = exp (−g‖xi − xj‖)2 (6)

where g is the kernel function parameter, which is related to the input space range or width. The larger
the sample input space range is, the larger the value is. In contrast, the smaller the sample input space
range is, the smaller the value is. The above optimization problem is translated into:

min 1
2

n
∑

i=1

n
∑

j=1
yiyjaiaj exp (−g‖xi − xj‖)2 −

n
∑

i=1
ai

s.t.
n
∑

i=1
yiai = 0, 0 ≤ ai ≤ c

(7)

Therefore, the minimization problem depends on the parameters c and g, and the correct and
effective selection of parameters would show a good classification performance for SVM. Thus,
GA was combined with SVM to optimize the penalty factor c and the kernel function parameter g.
The parameters of the GA are initialized as follows: maximum generation was 100, population was 20,
the search range of c was 0 to 100, and that of g was 0 to 1000.

2.4.2. Random Forests (RF)

RF is a nonlinear classification and regression algorithm, which was first proposed by Tin Kam in
1995. In 2001, Breiman conducted a deeper research [40]. The method combines bootstrap aggregating
and random subspace successfully. The essence of RF is a classifier that contains a number of
decision trees that are not associated with each other. When the data is input into a random forest,
the classification result is recorded by each decision tree. Finally, the category of data is voted by
decision trees. The RF shows good efficiency in practical applications, such as image processing,
environmental monitoring, and medical diagnosis [41–43].

The RF algorithm proceeds as follows:

(1) Using bootstrap sampling to generate T training sets S1, S2, · · · , ST randomly;
(2) Each training set is used to generate the decision tree C1, C2, · · · , CT . The value of the split

property set for each tree is mtry. The mtry value is the square root of the number of input
variables. In general, the value of mtry remains stable throughout the forest development process;

(3) Each tree has a complete development without taking pruning;
(4) For testing set X, each decision tree is used to test and obtain the category

C1(X), C2(X), · · · , CT(X); and
(5) The category of the testing set is voted by decision trees.

2.4.3. Extreme Learning Machine (ELM)

Extreme learning machine (ELM) is a new algorithm for regression and classification, which was
first proposed by Huang of Nanyang Technological University [40]. The essence of ELM is a single
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hidden layer feed-forward neural network (SLFN). The difference with other SLFN is that ELM
randomly generates the connection weights (w) and threshold (b), and without adjustment in the
training process. The optimal results can be obtained by adjusting the number of neurons in the hidden
layer. Compared with the traditional training methods, this method has the advantages of fast learning
speed and good generalization performance. In recent years, ELM has gained attention widely, such as
with on-line fault monitoring, price forecasting, and control chart pattern recognition [44–46].

The ELM algorithm proceeds as follows:
N samples are described by (xi, ti), where xi = [xx1, xx2, · · · , xxn]

T ∈ Rn, ti = [ti1, xi2, · · · , tim]
T ∈ Rm.

The activation function of neurons in the hidden layer is G. The ELM model can be represented as:

fÑ =
Ñ

∑
i=1

βiG(ai, bi, xj) = tj, j = 1, · · · , N (8)

where ai = [a1, a2, · · · , an]
T is the weight vector of the ith hidden layer node and the input node.

βi = [β1, β2, · · · , βn]
T is the weight vector of the ith hidden layer node and the input node. bi is the

threshold of the ith hidden node. Ñ is the number of hidden neurons. Equation (8) can be
abbreviated as:

Hβ = T (9)

where:

H(a1, · · · , aÑ, b1, · · · , bÑ, x1, · · · , xN) =

 G(a1, b1, x1) · · · G(aÑ, bÑ, x1)
...

...
...

G(a1, b1, xN) · · · G(aÑ, bÑ, xN)


N·Ñ

(10)

{
β = [βT

1 · · · βT
Ñ
]
Ñ·m

T = [tT
1 · · · tT

N]N·m
(11)

where H is the output matrix of the hidden layer, and the output weights can be obtained by solving
the least squares solution of the linear equations:

‖Hβ− T‖ = ‖HH+T − T‖ = min
β
‖Hβ− T‖ (12)

The least squares solution as:
β = H+T (13)

where H+ is the Moore-Penrose generalized inverse of the hidden layer output matrix H.

2.5. Allocation of Datasets and the Model Prediction Process

The 90 samples of original data were divided into two groups randomly. One group included
72 samples, which was used as a training set to build the model. The remaining 18 samples were used
as a testing set to verify the classification performance of the model.

In SVM, in order to avoid over-learning and insufficient learning when searching the best
parameters, the fitness function value of the GA was the highest accuracy rate of the training set
under five-fold cross-validation, and the best c and g were selected when the highest CVAccuracy
was obtained. In order to eliminate the impact of randomness, 10 prediction models were established,
and then the average of their accuracy rates was used to describe the classification performance of
the SVM.

In RF, the mtry value is the square root of the number of input variables. Therefore, the mtry value
of single e-tongue, single e-nose, the dimensionality reduction set by PCA, and the feature screening
set by GA-PLS were 3. The mtry value of original fusion set was 4. The 20 subsets based on variable
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accumulation, the mtry values of 1–3, 4–8, 9–15, and 16–20 were 1, 2, 3, and 4, respectively. Then,
we observed the classification performance of RF by changing the number of random forest decision
trees. The number of decision trees was taken from 2–100 at intervals of 2. In order to eliminate the
impact of randomness, 10 prediction models were established, and then the average of their accuracy
rates was used to describe the classification performance of the RF under the current decision tree.

In ELM, when the activation function of neurons in the hidden layer was determined, we changed
the number of hidden layer neurons to observe the ELM classification performance. The number
of hidden layer neurons was taken from 2–100 at intervals of 2. In order to eliminate the impact of
randomness, 10 prediction models were established, and then the average of the accuracy rates was
used to describe the classification performance of the ELM under the current neurons.

3. Results and Discussion

3.1. Pre-Processing

The detection data of the e-tongue and the e-nose contained 10-dimension feature variables,
respectively. Data from the two systems were combined to form new data for describing the beer
flavor information. A normalization between (−1, +1) was implemented on the original feature set
from the different sensors of the e-tongue and e-nose. Figure 4 shows the averaged-value radar plot
of the normalized values. According to the sensor response information, it was difficult to identify
the different samples, and the relationship for each sensor was extremely complex. It was difficult
to find the main features and their contribution to the beer flavor information. Thus, mining the
data features and obtaining the variables’ behavior are particularly important for distinguishing beer
brands correctly.
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3.2. Extraction of Sensor Feature Variables

In order to acquire as much information as possible from the original fusion set, the 10 principal
components were extracted by PCA, and the accumulated variance contribution rate was as high
as 99.99%.

Before applying the GA-PLS to select variables, a randomization test was required to determine
whether it could be applied. Figure 5 shows that randomization test result of the original fusion set.
It can be seen that the randomization test value was less than 5, indicating that the GA-PLS was
reliable. Figure 6 shows the GA-PLS search process for the best number of variables, it can be seen
that the CV% increased rapidly and then gradually slowed down as the number of variables increases.
When CV% reached a maximum 82.169%, the number of variables reached 12, and the number of
variables continued to increase, the CV% decreased slightly and then stayed in a relatively stable state.
On the contrary, in Figure 7, RMSECV decreased rapidly, and then slowly with the increase in the
number of variables. When the number of variables reached 12, the RMSECV arrived at its minimum
value of 0.5937, and then as the number of variables continued to increase, RMSECV increased slightly
and maintained a relatively stable state. Finally, 12 feature variables were extracted from the original
fusion set, which were CA0, C00, AE1, AAE, cpa(C00), W1C, W5S, W6S, W1S, W1W, W2S, and W2W.
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Figure 7. RMSECV change curve.

Figure 8 shows the VIP score of the original variables of the e-tongue and e-nose. C00 and AE1 had
larger VIP scores than the other variables, and this means that bitter and astringent were significant for
beer classification. Cpa(AAE) and cpa(CA0) had smaller VIP scores, and this means that the aftertaste
of umami and sour were less important for beer flavor. Thus, we generated the variable subsets which
could be used to build the classification models. Each subset was generated with those variables
based on the best VIP score. Subset #1 included C00, subset #2 included C00 and AE1, and subset #20
contained all the variables of the e-tongue and the e-nose. We then gradually accumulated the number
of variables, and observed the classification results of the models to achieve the purpose of filtering
redundant information [47].
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3.3. Results of the Models

Table 2 shows the classification results of single e-tongue, single e-nose, and the original fusion
set based on the SVM, RF, and ELM. The classification accuracy rate of the SVM for e-tongue was



Sensors 2017, 17, 1656 11 of 17

83.33%, for e-nose it was 80.56%, and the original fusion set was 88.89%. Figure 9 shows the parameter
optimization process of the SVM based on GA. The best c and g were selected when the highest
CVAccuracy was obtained to build the model. The classification accuracy rate of the RF for e-tongue
was 83.33%, for e-nose it was 77.78%, and the original fusion set was 88.89%. Figure 10 shows the
classification performance of the RF based on the number of decision trees. The classification accuracy
rate of the ELM for e-tongue was 82.78%, for e-nose it was 78.89%, and the original fusion set was
88.33%. Figure 11 shows the classification performance of the ELM based on the number of hidden
neurons. It can be seen that the classification accuracy rate increased by using data fusion.

However, we cannot be sure that the 20-dimensional feature variables were the main variables. It is
uncertain that each feature variable contributed to the beer overall flavor and affected the classification
results. Therefore, the following three feature selection methods were discussed to find the main
feature affecting the beer flavor.

Table 2. Comparison of results for single e-tongue, e-nose, and the original fusion set.

Dataset
Accuracy (%)

SVM RF ELM

E-tongue 83.33 83.33 82.78
E-nose 80.56 77.78 78.89

E-tongue and e-nose 88.89 88.89 88.33
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Figure 9. The parameter optimization fitness curve of the SVM: (a) e-tongue; (b) e-nose; and (c) the
original fusion set.
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Figure 10. The classification performance of the RF based on the number of decision trees: (a) e-tongue;
(b) e-nose; and (c) the original fusion set.
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Figure 11. The classification performance of the ELM based on the number of hidden neurons:
(a) e-tongue; (b) e-nose; and (c) the original fusion set.

Table 3 shows the classification results of the original fusion set, the dimensionality reduction
set by PCA, and the feature screening set by GA-PLS. It can be seen that the PCA extracted principal
components did not work desirably to improve the classification results. SVM and ELM classification
results rise slightly to 91.11% and 89.44%, respectively. The RF classification result was still 88.89%. This
may be used as an unsupervised learning method without introducing classified information. It may
lose effective authentication information and does not remove redundant information effectively.
Figure 12 shows the parameter optimization fitness curve of the SVM, the classification performance of
the RF based on the number of decision trees, and the classification performance of the ELM based on
the number of hidden neurons for the dimensionality reduction set by PCA. However, compared with
the 10 principal components extracted by PCA and the original fusion set, the 12-dimensional feature
variables selected by GA-PLS obtained a better classification result. The classification accuracy rate
of the SVM was 96.67%, for RF it was 94.44%, and for ELM it was 94.44%. This shows that GA-PLS
removed some redundant information of the original fusion set and selected the effective feature
variables. Figure 13 shows the parameter optimization fitness curve of the SVM, the classification
performance of the RF based on the number of decision trees, and the classification performance of
the ELM based on the number of hidden neurons for the feature screening set by GA-PLS. However,
this method cannot find the combined behavior among variables, and cannot obtain the importance
evaluation of each variables’ contribution.

Table 3. Comparison of results for different fusion feature sets.

Dataset
Accuracy (%)

SVM RF ELM

E-tongue and e-nose 88.89 88.89 88.33
PCA (e-tongue and e-nose) 91.11 88.89 89.44

GA-PLS (e-tongue and e-nose) 96.67 94.44 94.44
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Figure 12. (a) The parameter optimization fitness curve of the SVM for the dimensionality reduction
set by PCA; (b) the classification performance of the RF based on the number of decision trees for the
dimensionality reduction set by PCA; and (c) the classification performance of the ELM based on the
number of hidden neurons for the dimensionality reduction set by PCA.
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Figure 13. (a) The parameter optimization fitness curve of the SVM for the feature screening set by
GA-PLS; (b) the classification performance of the RF based on the number of decision trees for the
feature screening set by GA-PLS; and (c) the classification performance of the ELM based on the number
of hidden neurons for the feature screening set by GA-PLS.

Table 4 shows 20 subsets, which were generated with those variables based on the best VIP score.
The classification performance of SVM and ELM in subset #7 and RF in subset #9 could be equal to the
original fusion set, respectively, which meant that the original fusion set contained a large amount of
redundant information. With the number of variables increased, the classification performance of SVM,
RF, and ELM models appeared to have a small range fluctuation, and it showed that these variables
had a relevant impact on the contribution of beer flavor features. The highest classification accuracy
rate of SVM was up to 96.67% in subset #12, RF was 94.44% in subset #11, and ELM was 98.33% in
subset #12, respectively. With the number of variables continuing to increase, the classification accuracy
rate of the models decreased and did not exceed the highest value. Figure 14 shows the parameter
optimization fitness curve of the SVM for subset #12, the classification performance of the RF based
on the number of decision trees for subset #11, and the classification performance of the ELM based
on the number of hidden neurons for subset #12. In this way, we not only obtained the best subset
to achieve the purpose of reducing redundant variables, but also obtained the variables’ behavior
by observing the classification tendency of the model when variables were added gradually and the
highest classification accuracy rate for beer flavor information.
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Table 4. Comparison of accuracy based on different classification models using different subsets of
variables, based on VIP.

Subset Variables
Accuracy (%)

SVM RF ELM

#1 C00 37.78 55.56 43.33
#2 C00 + AE1 71.67 66.67 78.89
#3 C00 + AE1 + W1C 76.11 66.67 73.89
#4 C00 + AE1 + W1C + W3S 74.44 77.78 80.56
#5 C00 + AE1 + W1C + W3S + W3C 77.22 72.22 78.89
#6 C00 + AE1 + W1C + W3S + W3C + W5C 76.67 77.78 80.56
#7 C00 + AE1 + W1C + W3S + W3C + W5C + W1W 88.89 83.33 88.33
#8 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 88.33 83.33 86.11
#9 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) 91.67 88.89 87.78

#10 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S 82.78 83.33 86.11
#11 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE 92.22 94.44 93.89
#12 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S 96.67 94.44 98.33

#13 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W 96.67 94.44 98.33

#14 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W + W6S 96.67 94.44 93.89

#15 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W + W6S + CT0 92.78 94.44 93.89

#16 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W + W6S + CT0 + cpa(CT0) 91.67 88.89 92.78

#17 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W + W6S + CT0 + cpa(CT0) + W5S 93.89 94.44 88.89

#18 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W + W6S + CT0 + cpa(CT0) + W5S + cpa(AE1) 93.33 88.89 92.22

#19 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W + W6S + CT0 + cpa(CT0) + W5S + cpa(AE1) + cpa(CA0) 87.78 88.89 87.78

#20 C00 + AE1 + W1C + W3S + W3C + W5C + W1W + CA0 + cpa(C00) + W2S + AAE + W1S
+ W2W + W6S + CT0 + cpa(CT0) + W5S + cpa(AE1) + cpa(CA0) + cpa(AAE) 88.89 88.89 88.33

Notes: the model with the best classification performance shown as bold data.
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Figure 14. (a) The parameter optimization fitness curve of the SVM for subset #12; (b) the classification
performance of the RF based on the number of decision trees for subset #11; and (c) the classification
performance of the ELM based on the number of hidden neurons for subset #12.

4. Conclusions

The main conclusions are as follows:

(1) Compared with the single e-tongue and single e-nose, the classification accuracy rate of beer flavor
information was improved by using multi-sensor data fusion, and the classification accuracy rate
of SVM was 88.89%, RF was 88.89%, and ELM was 88.33%;

(2) The feature selection method based on PCA did not obtain the best form of beer flavor information.
The feature selection method based on GA-PLS improved the beer flavor classification rate and
reduced the feature dimension obviously, and SVM showed the best classification performance
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at 96.67%. However, it did not give the contribution behavior of each variable for the overall
information; and

(3) By variable accumulation based on the best VIP score, the classification accuracy rate of SVM and
ELM in subset #7 was 88.89% and 88.33%, respectively, and the classification accuracy rate of the
RF in subset #9 was 88.89%, which meant that the original fusion set contained a lot of redundant
information. Finally, ELM showed the best classification performance 98.33% in subset #12. Thus,
C00, AE1, W1C, W3S, W3C, W5C, W1W, CA0, cpa(C00), W2S, AAE, and W1S were considered as
the main features.

Among the contributions of this study, a variable accumulation strategy based on the best VIP
score was proposed and applied to beer flavor information identification. It provided a vital method,
which used the least characteristic variables and the best fusion method, combined with excellent
pattern recognition methods, to identify beer flavor information more efficiently and more accurately.
It not only obtained the important evaluation of each variable, but also obtained the correlation
behavior by observing the classification tendency of the model. Meanwhile, it also provided a more
efficient and accurate method to monitor product quality in the actual process of industrialization.
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